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We introduce a multidimensional item response theory (IRT) model for binary data
based on a proximity response mechanism. Under the model, a respondent at the
mode of the item response function (IRF) endorses the item with probability one. The
mode of the IRF is the ideal point, or in the multidimensional case, an ideal
hyperplane. The model yields closed form expressions for the cell probabilities. We
estimate and test the goodness of fit of the model using only information contained in
the univariate and bivariate moments of the data. Also, we pit the new model against
the multidimensional normal ogive model estimated using NOHARM in four appli-
cations involving (a) attitudes toward censorship, (b) satisfaction with life, (c) atti-
tudes of morality and equality, and (d) political efficacy.

The normal PDF model is not invariant to simple operations such as reverse
scoring. Thus, when there is no natural category to be modeled, as in many person-
ality applications, it should be fit separately with and without reverse scoring for
comparisons.
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INTRODUCTION

Over the past 30 years, item response theory (IRT) methods have enjoyed a grow-
ing popularity for modeling educational, personality, and attitudinal data. How-
ever, Chernyshenko, Stark, Chan, Drasgow, and Williams (2001, p. 524) argued
that researchers and practitioners need to pay more attention to model-data fit
when using IRT models. As they pointed out, without evidence of model fit, IRT
results may be suspect. These authors compared the fit of Samejima’s (1969)
graded model and Levine’s (1984) nonparametric Multilinear Formula Score
(MFS) model to a number of personality scales and concluded that “traditional”
parametric IRT models do not fit personality data well. They argued that, for per-
sonality data, ideal point models may be better suited than models based on a cu-
mulative response process (such as Samejima’s). As Chernyshenko et al. (p. 557)
pointed out, IRT models based on a cumulative response process assume that the
individual has a high probability of endorsing an item if the individual is located
above the item on a joint scale as defined by Coombs (1964). In ideal point models
the probability of an individual endorsing an item also depends on both the loca-
tion of the person and the position of the statement along the latent trait continuum
on such a joint scale. However, in these models, individuals will be more likely to
agree with statements having scale values similar to their own, whereas they will
be more likely to disagree with statements having scale values that are either more
or less extreme. Thus, ideal point models have single-peaked item response func-
tions. In the IRT literature ideal point models are commonly referred to as unfold-
ing models. In this article, we use both terms interchangeably.

In a follow-up study to Chernyshenko et al. (2001), Maydeu-Olivares (2005)
also compared the fit of a variety of parametric unidimensional models as well as
Levine’s model to the scales of another personality questionnaire. The methodol-
ogy was similar to that of Chernyshenko et al. He concluded that among the para-
metric models considered, Samejima’s was the best fitting model. However, in
contrast to Chernyshenko et al.’s study, he found that in some situations Levine’s
model did not fit better than Samejima’s model. Maydeu-Olivares attributed the
discrepant results from the two studies to the amount of multidimensionality pres-
ent in the scales of each study. He suggested that for scales that are substantially
unidimensional, unidimensional IRT models with mononotic item response func-
tions may be appropriate. On the other hand, for scales with moderate amounts of
multidimensionality, multidimensional IRT models may be needed to yield an ade-
quate fit.

The conclusions of Chernyshenko et al. (2001) and Maydeu-Olivares (2005)
studies do not necessarily conflict. If an unfolding model is needed to provide an
adequate fit to personality and attitudinal data as Chernyshenko et al. suggested,
but there are non-negligible amounts of multidimensionality in the data to be mod-
eled, then a multidimensional unfolding IRT model should be employed.
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Ideal point models go at least as far back as Chave and Thurstone (1931), with
fundamental contributions by Coombs (1964). By now there is a vast amount of lit-
erature on unfolding IRT models. To the interested reader van der Linden and
Hambleton (1997, part 5) may be a useful starting point. At Professor James S.
Roberts’s Web page http://www.psychology.gatech.edu/unfolding/, readers also
may find a brief introduction to these models, an exhaustive list of publications de-
scribing the numerous unidimensional unfolding IRT models, illustrative data sets,
and information on programs for estimating some of these models. Yet to date
there has been little research on multidimensional unfolding IRT models (but see
Bradlow & Schmittlein, 2000; DeSarbo & Hoffman, 1986, 1987; Takane 1996,
1998). In fact, most research on multidimensional parametric IRT models has fo-
cused on a single model, the multidimensional extension of Samejima’s model, us-
ing either a logistic function or a normal ogive function. In the multidimensional
case, the normal ogive version of the model is most frequently used, and the model
is simply referred to as the multidimensional normal ogive model (e.g., McDonald,
1997).

In this article we introduce a new ideal point IRT model for binary data. When a
single latent trait is assumed to underlie the responses, the model assumes that
there is an ideal point for each item, the maximum of the item response function,
and that when a respondent’s position on the latent trait continuum coincides with
the ideal point, the respondent will endorse the item with probability one. Thus, the
model assumes that there is truly an “ideal point” for each item. The greater the
distance between the respondent’s position and the ideal point, the smaller the
probability of endorsing the item. Our model is multidimensional in that the re-
sponse to an item may depend on more than one latent trait. In that case, our model
leads to an ideal hyperplane rather than to an ideal point. Thus for instance, in
two-dimensional models our model invokes the existence of an ideal line in the
two-dimensional space.

With the aim to explore model-data fit in personality and attitudinal data, and in
particular in relation to the choice of cumulative versus noncumulative item re-
sponse functions, we pit our model against the multidimensional normal ogive
model in a series of applications. The normal ogive model is obtained by using a
normal distribution function to link the conditional probability of endorsing an
item to a linear function of the latent traits. In the model proposed here we simply
use a normal probability density function (PDF) as link function instead of the cu-
mulative distribution function. Accordingly, we use the term normal PDF model to
denote the model introduced here. Because in addition the latent traits are assumed
to be normally distributed, our model captures the notion of a proximity response
mechanism through the use of the normal density function twice. First, the normal
density function is used to model the density of the respondents’ latent traits. Sec-
ond, this function is used to model the conditional probability of endorsing an item
given the latent traits (i.e., the item response function).
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The most frequently used method for estimating the multidimensional normal
ogive model is probably the limited information procedure implemented in
NOHARM (Fraser & McDonald, 1988). In NOHARM consistent and asymptoti-
cally normal estimates are obtained by simply minimizing an unweighted least
squares discrepancy between sample and model-implied univariate and bivariate
moments of the data. A similar procedure is used to estimate the model introduced
here.

THE NORMAL PDF MODEL

Consider n items Y = (Y1, …, Yn)' each with two possible outcomes. Without loss
of generality we may assign the values {0, 1} to their outcomes. Thus, the distribu-
tion of each item Yi is Bernoulli, and the joint distribution of the set of items Y is
multivariate Bernoulli (MVB: Teugels, 1990; Maydeu-Olivares & Joe, 2005).

Any item response model for this set of items can be written as (Bartholomew &
Knott, 1999)

Here, we use to denote the probability of observing each of the

possible 2n binary patterns, and �p (�) to denote the probability density function of a
p-dimensional vector of latent traits �. Finally, Pr(Yi = 1|�) is denoted in the IRT lit-
erature the item response function. Different IRT models can be obtained by select-
ing suitable models for Pr(Yi = 1|�) and �p (�) in (1). For a good overview of IRT
models, see van der Linden and Hambleton (1997). However, due to the difficulty in
evaluating the multidimensional integral in (1) most latent trait models proposed to
date assume a single latent trait. Obviously, unidimensional latent trait models (i.e.,
p = 1) are less likely to be able to yield a good fit in applications than multidimen-
sional models unless applied to a well-designed homogeneous item set.

The most widely used multidimensional latent trait model is the normal ogive
model (e.g., McDonald, 1997). This model assumes that the item response func-
tion is a standard normal distribution function evaluated at , that is

where . It also assumes that the density of the latent traits is
multivariate standard normal with correlation matrix �, that is,
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Like the normal ogive model, most latent trait models for binary data use
monotonically increasing item response functions. However, some authors (e.g.,
Andrich, 1996; Roberts, 1995; van Schuur & Kiers, 1994) have argued, following
Coombs (1964), that if the psychological mechanism by which individuals re-
spond to items is a proximity mechanism, nonmonotonic item response functions
should be used instead. Models based on this assumption of a proximity psycho-
logical response mechanism are generally referred to as ideal point models and as
unfolding models.

To obtain a multidimensional unfolding model we assume as in the normal
ogive model that Equation (3) holds. That is, we assume that the latent traits are
normally distributed, and possibly correlated. However, the item response function
is specified as

Namely, we use a normal density function (scaled by ) to link the item re-
sponse function to the linear function of the latent traits . We refer to this
model as the normal PDF model. The constant is used to ensure that the item
response function takes the value of one for some value of the latent traits �. Thus,
according to the model if the respondent and item positions coincide in the space of
the latent traits, the respondent will endorse the item with probability one.

In the case of a single latent trait (i.e., p = 1), the nonmonotonic and symmetric
item response function of this model reaches its maximum at and has

two inflexion points . That is, the ideal point is . In

multidimensional models, we have an ideal hyperplane rather than an ideal point.
This is because the maximum of (4) is reached whenever . Using
the general expression of the squared Euclidean distance between a point and a
hyperplane,

we can write the item response function of the normal PDF model as a function of
this distance as
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Note that in the unidimensional case, ,

and we obtain the special case .

We also note that in general, for p ≥ 1, (4) satisfies

and

To resolve this indeterminacy we estimate the model parameters with the restric-
tion that the intercepts be negative.

The normal PDF model satisfies another very interesting property, namely, that
the probability of the full vector of responses of an individual can be all computed
in closed form, without requiring integration, regardless of the dimensionality of
the latent traits. In other words, for this model, given a set of item parameter esti-
mates, Equation (1) has a closed form solution. To see this, let be
a n × p matrix of slope parameters, and let . Furthermore, let s be
any subset consisting of k items. Because the distribution of the items is Bernoulli,

we have (Teugels, 1990). That is, �s is the kth joint

moment involving the variables in s. It is also the probability that all the variables
in s take the value of 1. We show in the Appendix that �s has the following closed
form solution under the normal PDF model,

where �s and �s denote a k × 1 vector and a k × k matrix, respectively, obtained by
taking the appropriate rows and columns of � and �.

For instance, applying (8) we find that the univariate and bivariate moments of
the MVB distribution under the normal PDF model are
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where and Bij = (Bi � Bj) is a p × 2 matrix. We used and
in (9) and (10) to indicate that, because the items are Bernoulli random

variables, these moments are also marginal probabilities. The full set of (2n – 1)
moments of the MVB distribution can be computed in closed form using (8).
Because there is a one-to-one linear correspondence between the set of these
moments and the set of 2n binary cell probabilities (Maydeu-Olivares & Joe,
2005; Teugels, 1990), the cell probabilities (1) can be computed also in closed
form.

To identify the model it suffices to consider univariate and bivariate MVB mo-
ments. Identification restrictions remain unchanged when higher order moments
are considered. This implies that the model can be estimated using only the
univariate and bivariate margins of the contingency table. It also implies that the
identification conditions for the normal PDF model are identical to those in the
normal ogive model. Identification conditions for the normal ogive model are
given for instance in McDonald (1999). Thus, when p = 1, all parameters of the
normal PDF model are identified. When p > 1 a model with minimal identification
restrictions (i.e., an unrestricted or exploratory model) is obtained by setting � = �

and, to solve the rotational indeterminacy of B, by letting B be a low echelon ma-
trix (i.e., �hl = 0, l = 1,…, p; h = 1,…, l – 1). In the multidimensional case, after the
item parameters have been estimated, may be rotated orthogonally or obliquely
to help in interpreting the model, just as in the normal ogive model. Alternatively,
based on some a priori information about the data, researchers may wish to fit a re-
stricted model in which some elements of �, B, and � are subject to normaliza-
tion, exclusion or equality constraints.

In closing our treatment of the normal PDF IRT model we consider making
statements about an individual’s location on the latent traits given his or her binary
responses. All the relevant information needed for this is contained in the posterior
distribution of the latent traits given the observed binary responses (Bartholomew
& Knott, 1999),

Thus, after the item parameters have been estimated, an individual’s location
can be obtained for instance by computing the mean or the mode of this poste-
rior distribution. The former are known as expected a posteriori (EAP) scores,
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and the latter maximum a posteriori (MAP) scores. Obtaining MAP scores in
general requires an iterative procedure, whereas obtaining EAP scores involves
computing

We illustrate the use of EAP scores in one of the applications.

LIMITED INFORMATION ESTIMATION AND TESTING

Because MVB moments have a closed form solution under this model, estimation
methods that minimize a discrepancy function between sample and expected mo-
ments are a natural choice.1 However, in most latent trait applications the number
of binary variables is large and the observed contingency tables are very sparse. As
a result, high order sample moments may be very poorly estimated. In contrast,
univariate and bivariate sample moments can be reasonably estimated in very
small samples regardless of n. Limited information procedures based on univariate
and bivariate information are the most widely used approaches to estimate the mul-
tidimensional normal ogive model (see Christoffersson, 1975; Maydeu-Olivares,
2001b; Muthén, 1978, 1993). These methods also yield as a side product limited
information goodness-of-fit tests. Maydeu-Olivares and Joe (2005) recently pro-
vided a unified treatment of limited and full information estimation and good-
ness-of-fit testing methods for MVB models. They show that bivariate information
methods have high efficiency relative to asymptotically optimal procedures such
as maximum likelihood. Furthermore, they are considerably faster to execute, par-
ticularly for multidimensional models. They also show that bivariate information
tests have more precise Type I errors and are asymptotically more powerful in large
and sparse binary tables than full information goodness-of-fit tests such as
Pearson’s 
2.
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1The model can be alternatively estimated using full information maximum likelihood (ML). How-
ever, when the normal PDF model is estimated using ML the computational advantage of this model
(closed form expressions for the MVB moments) is lost for large models. This is because, in order to
compute the binary pattern probabilities using the closed form expressions for the moments, all 2n – 1
moments need to be computed. As the number of variables increases, 2n – 1 becomes a very large num-
ber. For ML estimation of large models it is computationally more efficient to compute the probabilities
of the observed patterns by numerical integration than computing the probabilities of all patterns using
the closed form expressions for the MVB moments.
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Limited information methods using only univariate and bivariate moments are
employed here to estimate and evaluate the goodness of fit of the normal PDF
model. To estimate the model, we collect all n univariate moments given by Equa-

tion (9) in and all bivariate moments given by Equation (10) in .

Thus, we let , where and

We use to denote the restrictions imposed by the
model on the vector of univariate and bivariate moments , where � denotes a
q-dimensional vector containing all mathematically independent elements in �,

B, and �. Thus, the degrees of freedom available for testing are .

We assume that is of full rank so that the model is locally identified. Fur-

thermore, let N denote sample size and let be the sample counterpart of (i.e.,
univariate and bivariate sample proportions). Then, the model parameters can be
estimated by minimizing

where , and is a matrix converging in probability to W, a posi-
tive definite matrix. Letting 	 be the asymptotic covariance matrix of , some
common choices of in (13) are (weighted least squares, or WLS),

(diagonally weighted least squares, or DWLS), and
(unweighted least squares, or ULS).

This general estimation framework is denoted as weighted least squares for mo-
ment structures (see Browne, 1984; Browne & Arminger, 1995; Satorra & Bentler,
1994). Maydeu-Olivares and Joe (2005; see also Maydeu-Olivares, 2001b) pro-
vided a unified framework of full and limited information weighted least squares
estimation methods for MVB models. Large sample properties for the parameter
estimates, standard errors and goodness-of-fit tests of the model can be readily ob-
tained using standard theory for the estimation of moment structures. Letting

, the estimator obtained by minimizing (13) is consistent
and

where denotes the univariate and bivariate residuals. These residu-
als can be divided by their standard error to obtain standardized residuals that are
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asymptotically standard normal. Also, in unrestricted multidimensional solutions
where the columns of have been rotated, standard errors for the rotated loadings
can be obtained using formulae given by Maydeu-Olivares (2001b); see also
Browne and du Toit (1992).

Now, from standard theory, , where denotes as-
ymptotic equality. Thus, in general,

where the are independent chi-square variables with one degree of freedom
and the are the non-null eigenvalues of . In particular,
when , we obtain an estimator with minimum asymptotic variance
among the class of estimators (13). In this special case (14) and (16) simplify to

and . respectively. However, the use of

requires inverting a very large matrix. Thus, WLS estimation is not suit-
able for large applications.

When , following Satorra and Bentler (1994; see also Maydeu-
Olivares, 2001a, 2001b; Rao & Scott, 1987) to assess the goodness of fit of the
model we may scale T by its asymptotic mean using

Alternatively, we may adjust T by its asymptotic mean and variance using

denote the scaled (for mean) and adjusted (for mean and variance) test
statistics. The former is referred to a chi-square distribution with r degrees of free-

dom, whereas the latter is referred to a chi-square distribution with
degrees of freedom.

Here we estimate the normal PDF model by simply using (i.e., ULS)
where standard errors, standardized residuals, and goodness-of-fit tests will be
computed via (14), (15), and (17) by evaluating � and 	 at the estimated parameter
values. This approach is very similar to the one implemented in the computer pro-
gram NOHARM (Fraser & McDonald, 1988) which estimates the multidimen-
sional normal ogive model also using ULS from univariate and bivariate moments.
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However, there are two differences between the present approach and the approach
used in NOHARM (see Maydeu-Olivares, 2001b). The first difference is that in
NOHARM estimation is performed in two stages to improve computational effi-
ciency by exploiting a separability of parameters that exists in the normal ogive
model but not in the normal PDF model. The second difference is that to obtain
standard errors and goodness-of-fit tests for NOHARM, 	 is consistently esti-
mated using sample proportions, whereas in our estimation of the normal PDF
model 	 is consistently estimated by evaluating it at the estimated parameter val-
ues. This is because 	 depends on fourth-order joint moments. These can be com-
puted in closed form under the normal PDF model, but they require multivariate in-
tegration in the normal ogive model.

APPLICATIONS

We present four applications where we compare the fit of the normal PDF model
estimated using the ULS estimator described above against the fit of the normal
ogive model estimated using also ULS as implemented in NOHARM. In the first
application, we model attitudes toward censorship. This is a typical application
where the item stems suggest that it is plausible to assume that individuals use a
proximity mechanism in responding to the items. In applications like this one, the
normal PDF model should provide a better fit than the normal ogive model. In the
second application we model satisfaction with life. In this application, given the
item stems, a proximity mechanism in responding to the items does not seem plau-
sible. Rather, a priori, a model with monotonically increasing item response func-
tions seems more reasonable for these items. As a result, in this application we ex-
pect the normal ogive model to yield a better fit. The third application involves
modeling attitudes of morality and equality. This application is used to illustrate
that if the sample size is small, the normal PDF and normal ogive model may yield
a similar fit although the estimated item response functions appear quite distinct.
Finally, the fourth application involves modeling political efficacy. This applica-
tion is used to illustrate that in some situations we may not empirically distinguish
between these two models, even with large sample sizes, because their item re-
sponse functions are very similar in the region of high density of respondents.

Attitudes Toward Censorship

In this example, we model a set of 223 observations collected by Roberts (1995) on
20 statements reflecting attitudes toward censorship.2 The statements were origi-
nally published in Rosander and Thurstone (1931). Roberts (1995) asked the re-
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spondents to rate each statement using a 6-point scale ranging from 1 (strongly dis-
agree) to 6 (strongly agree). Their responses were dichotomized (0 = disagree, 1 =
agree) for this analysis.

In Table 1 we provide goodness-of-fit results for the normal PDF model applied
to these data with one, two, and three latent traits.3 In this table, we also provide the
goodness of fit results obtained for the normal ogive model using NOHARM. As
can be seen in this table, the normal PDF model reproduces the data better than the
normal ogive model. Two latent trait dimensions seem to be necessary to repro-
duce these data using the normal PDF model, whereas three dimensions seem to be
necessary for the normal ogive model.

In Figure 1 we provide a plot of the slope parameters estimated in the two-di-
mensional solution, that is, �B. Also, in Figure 2 we provide the bidimensional item
response function for one of the items, Item 5. We note that in this figure the ideal
point (i.e., the point at which respondents endorse an item with probability one) is
not a point but an hyperplane. In this case, because the model is bidimensional, the
hyperplane is just a line.

Now, in Figure 1, most items fall roughly on a straight line close to the latent
trait 1 axis. High scores on this axis indicate an anti-censorship attitude, and low
scores on this axis a pro-censorship attitude. We cannot meaningfully interpret the
second latent trait. In fact, a mild (20º) rotation suggests that the second dimension
is mostly caused by Item 5. Thus, the second latent trait appears to be just “noise”
induced by some items which are not appropriate indicators of the first latent trait.
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3The null hypothesis being tested is that the model holds in the population. Larger values on the sta-
tistics indicate worse fit. As a result, the statistics could be referred to as “badness-of-fit” statistics. Here
we use of the more common term goodness-of-fit statistics.

TABLE 1
Goodness-of-Fit Tests for the Censorship Data

Items Traits T T df p T df p

Normal PDF
20 1 5.40 244.38 170 < .01 183.40 127.58 < .01
20 2 3.58 180.15 151 .05 126.86 106.33 .09
20 3 2.66 145.42 133 .22 104.00 95.12 .25
16 1 2.59 133.64 104 .03 95.92 74.65 .05

Normal ogive
20 1 9.73 408.50 170 < .01 165.05 68.67 < .01
20 2 4.27 214.21 151 < .01 99.30 70.00 .01
20 3 3.07 169.77 133 .02 83.83 65.67 .07
16 1 3.63 171.01 104 < .01 85.98 52.29 < .01

Note. N = 223; T NF� � ; T denotes T adjusted by its asymptotic mean; T denotes T adjusted by its
asymptotic mean and variance.



To identify which items are poor indicators of the latent trait attitude toward cen-
sorship, we inspect the standardized univariate and bivariate residuals obtained
from fitting the one-dimensional model. The five largest standardized residuals for
the one-dimensional solution are {–6.33, –4.84, 3.64, –3.14, –2.96} which corre-
spond to the following univariate and bivariate residuals {(4), (12), (19,4), (5),
(4,1)}. These residuals suggest that a one-dimensional solution may fit the 17
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FIGURE 1 Censorship data. Plot of the regression slopes for the two-dimensional solution.

FIGURE 2 Plot of the item response function Pr (Y = 1'() for item 5 of the censorship data.



statements remaining after deleting statements {4, 5, 12}. The goodness-of-fit
indices for this model are T = 145.01 on 119 df, p = .05, and T = 105.30 on 86.41
df, p = .08. This model fits well. Interestingly, the � estimate for Item 16 is very
low, 0.01, with a standard error of 0.06. Under a unidimensional normal PDF
model this statement “Education of the public taste is preferable to censorship”
provides very little information about respondents’ attitudes toward censorship.
After removing this item, we fitted a one-dimensional model to the remaining 16
items obtaining finally T = 133.64 on 104 df, p = .03, and T = 95.92 on 74.65 df, p =
.05. Thus, we have been able to identify a set of 16 items from the original set that
can be used to measure attitude toward censorship. The parameter estimates and
standard errors for this final model are given in Table 2.
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TABLE 2
Parameter Estimates and Standard Errors for a One-Dimensional Model

Applied to 16 Statements on Censorship

Item Stem α β

1 I doubt if censorship is wise. –1.20 (0.10) –0.87 (0.24)
2 A truly free people must be allowed to choose their

own reading and entertainment.
–0.28 (0.10) –0.33 (0.10)

3 We must have censorship to protect the morals of
young people.

–1.05 (0.09) 0.77 (0.16)

6 The whole theory of censorship is utterly unreasonable. –1.54 (0.08) –0.50 (0.10)
7 Until public taste has been educated, we must continue

to have censorship.
–1.48 (0.11) 0.98 (0.22)

8 Many of our greatest literary classics would be
suppressed if the censors thought they could get
away with it.

–0.63 (0.06) –0.27 (0.07)

9 Everything that is printed for publication should first be
examined by government censors.

–1.91 (0.11) 0.63 (0.13)

10 Plays and movies should be censored but the press
should be free.

–1.88 (0.09) 0.30 (0.10)

11 Censorship has practically no effect on people’s morals. –1.36 (0.07) –0.33 (0.08)
13 Censorship protects those who lack judgment or

experience to choose for themselves.
–1.02 (0.06) 0.38 (0.08)

14 Censorship is a very difficult problem and I am not sure
how far I think it should go.

–0.16 (0.10) 0.76 (0.07)

15 Censorship is a good thing on the whole although it is
often abused.

–0.75 (0.11) 0.88 (0.14)

17 Human progress demands free speech and a free press. –0.25 (0.09) –0.43 (0.08)
18 Censorship is effective in raising moral and aesthetic

standards.
–1.13 (0.10) 0.89 (0.18)

19 Censorship might be warranted if we could get
reasonable censors.

–0.47 (0.10) 0.80 (0.10)

20 Morality is produced by self-control, not by censorship. –0.30 (0.10) –0.42 (0.09)

Note. The statement numbering corresponds to the original 20-item set; standard errors are in pa-
rentheses.



We provide in Figure 3 plots of the item response function for selected items. The
plots inFigure3 illustrate theversatilityof themodel.The itemresponse function for
Item 9 corresponds to an item that is endorsed only by respondents with a pro-cen-
sorship view. The probability of endorsing this item is maximum for extreme
pro-censorship respondentsand the itemresponse function in the regionofhighden-
sity of respondents is monotonically increasing. The plot for Item 3 (“We must have
censorship to protect the morals of young people”) on the other hand is non-
monotonic. According to the model, the probability of endorsing the item is maxi-
mum for respondents with a moderately positive attitude toward censorship. The
more anti-censorship the attitude, the less likely the item is endorsed. But respon-
dents with an extreme pro-censorship view are also less likely to endorse the item
than respondents with an moderate pro-censorship view. They may not endorse the
item because they believe that the morals of all people should be protected, not only
the morals of young people. Finally, the model can handle well “I do not have a clear
opinion on the topic” items such as Item 14. The probability of endorsing this item is
maximumfor respondents thatareneitherpro-noranti-censorshipandminimumfor
respondents with extreme pro- or anti-censorship views.

Given this discussion, it is not surprising that, as shown in Table 1, a unidi-
mensional model with monotonically increasing item response functions, such as
the normal ogive model, fails to fit adequately these 16 items.

Satisfaction With Life

Professor Edward Diener kindly provided the responses of 7,167 individuals from
42 countries to the Satisfaction with Life Scale (Diener, Emmons, Larsen, & Grif-
fin, 1985). The questionnaire consists of these five items.

1. In most ways my life is close to my ideal.
2. The conditions of my life are excellent.
3. I am satisfied with my life.
4. So far I have gotten the important things I want in life.
5. If I could live my life over, I would change almost nothing.

which are to be rated on a 7-point scale ranging from 1 (strongly disagree) to 7
(strongly agree). For this analysis we discarded those individuals who chose the
middle category neither agree nor disagree for any of the items and dichotomized
the responses of the remaining individuals (0 = disagree, 1 = agree). The resulting
sample size was 4,073.

Of these item stems only the first and third may be consistent with the notion of
a proximity response mechanism. Thus, a priori, we expect a model with mono-
tonic curves to fit better these data than the normal PDF model. In Table 3 we pro-
vide goodness-of-fit results for one- and two-dimensional normal PDF and normal
ogive models fitted to these data. We also include in this table the results of a re-
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FIGURE 3 Plot of selected item response functions for a one dimensional model applied to 16 items of the censorship data.



stricted two-dimensional model suggested by McDonald (1999). In this model, the
first three items are indicators of present satisfaction with life, the two last items
measure past satisfaction with life, and the two latent dimensions are correlated.
As can be seen in this table, the two-dimensional restricted normal ogive model
provides a good fit to these data given the sample size. On the other hand, all the
normal PDF models provide an extremely poor fit to these data. This was what we
expected given the item stems.

Attitudes of Morality and Equality

Jöreskog and Sörbom (1996) provided data on 200 Swedish schoolchildren in
Grade 9 who used a 4-point scale (unimportant, not important, important, and very
important) to rate the importance of each of these items to them: (a) human rights,
(b) equal conditions for all people, (c) racial problems, (d) equal value of all peo-
ple, (e) euthanasia, (f) crime and punishment, (g) conscientious objectors, and (h)
guilt and bad conscience. Their responses were dichotomized for this analysis (0 =
not important, 1 = important).4

We fitted one- and two-dimensional normal PDF and normal ogive models to
these data. We also fitted a restricted two-dimensional model suggested in
Jöreskog and Sörbom (1996). In this restricted model Items {1,2,4,5} are taken as
indicators of the latent trait equality, and Items {3,6,7,8} are taken as indicators of
the latent trait morality. The two latent traits are correlated. A priori, we do not be-
lieve that a model based on a proximity mechanism is suitable for these data.
Rather, we expected the normal ogive model with its monotonic item response
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4Five respondents had out-of-range values for some of the items. Therefore the actual sample size
used in the analysis was 195.

TABLE 3
Goodness-of-Fit Tests for the Satisfaction With Life Scale

T T df p T df p

Normal PDF
One trait 7.24 273.70 5 < .01 258.53 4.72 < .01
Two traits, unrestricted 7.18 198.79 1 < .01 198.79 1.00 < .01
Two traits, restricted 6.37 358.19 4 < .01 178.16 1.79 < .01

Normal ogive
One trait 0.93 42.84 5 < .01 41.14 4.80 < .01
Two traits, unrestricted 0.01 0.75 1 .39 0.75 1.00 .39
Two traits, restricted 0.21 10.20 4 .04 10.04 3.94 .04

Note. N = 4,073; T denotes T adjusted by its asymptotic mean; T denotes T adjusted by its
asymptotic mean and variance.



functions to fit better these data. This is because a priori we expected that the
higher the sense of morality and equality of respondents the more likely they
would endorse these items.

However, as can be seen in Table 4 all models provide a good fit to the data.
Furthermore, the models with two latent traits do not appear to outperform the
one-dimensional models. Also, we see in this table that the difference in fit be-
tween the one-dimensional normal PDF and normal ogive models is negligible.
Yet, the estimated item response functions of these two models are markedly dif-
ferent for most items. This is shown in Figure 4 where we provide plots for se-
lected items.

If we cannot choose between these models based on their fit to the univariate
and bivariate moments, could we choose between them using full information
statistics? To answer this question, we estimated both unidimensional models us-
ing full information maximum likelihood. We obtained X2 = 230.68 and G2 =
152.30 for the normal PDF model and X2 = 234.10 and G2 = 148.28 for the nor-
mal ogive model. The number of degrees of freedom is 239. Thus, although a
priori we considered that the normal PDF model is not an appropriate model for
these data, the fit of the model is only negligibly outperformed by the normal
ogive model. A larger data set would be needed to distinguish between these two
models in this application.

To shed more light into this issue, we computed EAP scores for both models
using the ULS parameter estimates via Equation (12) assuming a standard nor-
mal prior distribution for the latent trait. We provide in Figure 5 a scattergram of
the EAP scores. As can be seen, for most respondents the EAP scores under both
models are approximately linearly related. However, this is not true for a small
set of subjects, so that the overall correlation between the EAP scores is only
0.59.
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TABLE 4
Goodness-of-Fit Tests for the Morality and Equality Data

T T df p T df p

Normal PDF
One trait 0.24 17.48 20 .62 14.22 16.28 .60
Two traits, unrestricted 0.13 12.16 13 .51 10.69 11.43 .51
Two traits, restricted 0.24 17.44 19 .56 14.14 15.40 .54

Normal ogive
One trait 0.30 16.93 20 .66 12.34 14.57 .62
Two traits, unrestricted 0.11 7.20 13 .89 5.53 9.98 .85
Two traits, restricted 0.26 14.60 19 .75 10.64 13.84 .70

Note. N = 195; T NF� � ; T denotes T adjusted by its asymptotic mean; T denotes T adjusted by its
asymptotic mean and variance.



Political Action Survey

Jöreskog and Moustaki (2001) modeled the U.S. sample of the Political Action
Survey. The data set consists of six items measuring political efficacy. There were
1,719 individuals who responded to these items using the following categories:
strongly agree, agree, disagree, strongly disagree, do not know, and no answer. Af-
ter eliminating those cases with do not know and no answer responses, the total
sample size is 1,554. For purposes of illustration, the data were dichotomized as 1
(strongly disagree) and  0 (all else) for the present analysis.
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FIGURE 4 Morality and equality data. Plot of selected item response functions.

FIGURE 5 Morality and equality data. Scattergram of EAP scores for the normal PDF model
against EAP scores for the normal ogive model.



We estimated one-dimensional normal PDF and normal ogive models to the
data dichotomized in this fashion. We obtained the following goodness-of-fit sta-
tistics for the normal PDF model: T = 0.04, T = 15.39 on 9 df, p = .08, and T =
13.72 on 8.03 df, p = .09. For the normal ogive model estimated using NOHARM
we obtained T = 0.04, T = 16.19 on 9 df, p = .06, and T = 11.9 on 6.62 df, p = .09.
Thus, both models yield a similar fit to the univariate and bivariate moments of
these data even though the sample size is large in this case.

This occurs because with this dichotomization the proportion of respondents in
Category 1 is very low for all items: {0.08, 0.05, 0.04, 0.02, 0.02}. As a result, the
item response functions of the normal PDF model are monotonically increasing in
the area of high density of respondents, , and they are very hard to dis-
tinguish from the item response functions of the normal ogive model. This is
shown in Figure 6, where we plot the item response functions for the normal PDF
and normal ogive models for the first four items.

In fact, the predictions of these two models are hard to distinguish even when all
the information available in these data is employed. We estimated by full informa-
tion maximum likelihood the two competing models. For the normal PDF model
we obtained X2 = 44.84 and G2 = 52.14 on 51 df. For the normal ogive model we
obtained X2 = 44.89 and G2 = 53.04 also on 51 df.
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FIGURE 6 Political efficacy data. Plot of selected item response functions
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CONCLUSIONS

In some item response applications it is reasonable to assume that individuals use a
proximity mechanism in responding to the items. Yet, in other applications a cu-
mulative response mechanism seems a priori more reasonable. Latent trait models
based on a proximity response mechanism are generally referred to as ideal point
models and also as unfolding models. When the data contain moderate amounts of
multidimensionality, IRT models with several latent traits may be needed to repro-
duce the data adequately. To obtain a multidimensional IRT model with
nonmonotonic item response functions we simply link a linear function of the la-
tent traits using a normal probability density function. The model proposed is in-
deed an ideal point model in the sense that a respondent—precisely at the ideal
point (the mode of the item response function)—endorses the item with probabil-
ity one. A more general model with an additional parameter controlling the proba-
bility of the modal point is easily conceived. Such a model may deserve future in-
vestigation, though problems can be anticipated related to bounds on the
probabilities and possibly identifiability. Further research should also consider the
extension of this model to the polytomous case.

In the model proposed here the latent trait density is assumed to be multivariate
normal. We show that the two specifications of this model (normal probability den-
sity link function and normally distributed latent traits) result in closed form ex-
pressions for the moments of the multivariate Bernoulli distribution. As a result,
cell probabilities under this model can be computed without resorting to numerical
integration regardless of the number of traits involved.

We have seen that in applications where a proximity response mechanism is
plausible the model indeed fits better than the multidimensional normal ogive
model. The model seems particularly suited to model items of the type “I don’t
have a clear opinion on the topic.” Yet, as we have seen, when only a small sample
is available the normal PDF and normal ogive models may be hard to distinguish
even though their item response functions are quite distinct. Furthermore, even
when large samples are available, if the proportion of respondents endorsing the
items is very low for all items it may be hard to distinguish these two models as
their item response functions will coincide in the region of high density of respon-
dents. Thus, only fitting models based on a proximity mechanism (such as the nor-
mal PDF model introduced here) or fitting models based on a cumulative response
process (such as the normal ogive model) is to be discouraged. Rather, researchers
should compare the fit of competing models based on alternative response pro-
cesses. Most important, they should consider a priori which response mechanism
is most plausible for the application of interest.

To estimate our model we simply minimized the sum of squared errors be-
tween the observed and expected univariate and bivariate moments of the MVB
distribution, very much as the normal ogive model is estimated in NOHARM.
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Limited information methods such as those employed here are an attractive op-
tion to estimate latent trait models in sparse binary tables. They are
computationally very efficient, they naturally yield limited information test sta-
tistics, and they yield residuals which are asymptotically standard normal and
that can be readily used to detect the source of misfit in poorly fitting models, as
we have illustrated in one of the applications.

Unlike full information test statistics such as Pearson’s 
2 or the likelihood ratio
test G2, limited information test statistics maintain their nominal Type I error rates
even in sparse tables. Maydeu-Olivares (2001a) reported a simulation study where
100 observations sufficed to obtain accurate Type I errors using the test statistic
employed in this article when testing a six-dimensional IRT model for 21 binary
variables. Furthermore, limited information test statistics may be asymptotically
more powerful than full information statistics (Maydeu-Olivares & Joe, 2005).
Thus, limited information test statistics can be safely used to compare competing
models such as the multidimensional PDF model versus the multidimensional nor-
mal ogive model.

The model introduced here is not the first multidimensional IRT model with
nonmonotonic item response functions. Alternative models have been proposed in
the literature by Bradlow and Schmittlein (2000), DeSarbo and Hoffman (1986,
1987), and Takane (1996, 1998). DeSarbo and Hoffman introduced a model that
allows representation of both subjects and objects in a joint space and they applied
their model to investigate market structure. The respondent latent “disutility” for a
certain product involves a weighted distance between the respondent’s ideal point
and the product (i.e., object) coordinates, an individual threshold value, and an er-
ror component with a logistic distribution function. These assumptions lead to a lo-
gistic item response function. Estimation is performed via maximum likelihood
methods. Similar ideas can be found in Takane (1996, 1998): Respondents and
item categories are represented as points in a joint space, and the item response
function decreases as the distance between them decreases. After dichotomizing
the multiple-choice data, the respondent point is assumed to have a Gaussian dis-
tribution and is then integrated out to derive marginal probabilities of response pat-
terns. The item response function is recommended to have a Gaussian form whose
parameters depend on the distance. Estimation proceeds by maximum likelihood
using the EM algorithm. Finally, Bradlow and Schmittlein (2000) proposed a prox-
imity model to evaluate the performance of six Web search engines to locate web
pages. A squared Mahalanobis distance between engines and web pages is defined
in a joint space. The probability of an engine finding a given web page is an inverse
function (no exponential involved) of that distance. A hierarchical Bayesian model
involving inverse Wishart and normal distributions is fitted, and inference is de-
rived using MCMC methods. Goodness-of-fit comparisons are based on the natu-
ral log of the Bayes factor. All of these models can be considered as genuine ideal
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points models while our method, as already stated, becomes an ideal hyperplane
model when multidimensional latent variables are considered.

A direction of future research is to compare their approach with ours, and
against the normal ogive model (or other multidimensional parametric models
based on a cumulative response process) to give additional information on whether
proximity or cumulative response mechanisms are more suitable for modeling be-
havioral, personality, and attitudinal data. Readers interested in this topic should
also consult the recent article by Stark, Chernyshenko, Drasgow, and Williams
(2006) who, within a unidimensional context, have compared the two-parameter
logistic model against a dichotomous version of the generalized graded unfolded
model (see Roberts, 2001; Roberts, Donoghue, & Laughlin, 2000; Roberts &
Laughlin, 1996) in fitting the scales of the 16PF (Conn & Rieke, 1994).

A final caveat: The normal PDF model is not equivariant to simple operations
such as reverse scoring of the items. When estimated with equivariant estimators
such as the bivariate ULS estimator employed here or the ML estimator, an
equivariant model leads to a probability model in the same parametric family, with
parameters transformed in a simple way. For instance, the normal ogive model is
equivariant. Reverse scoring all the items leads to a model with the same goodness
of fit, and the same parameter estimates, except for a sign change in the intercepts
�. In contrast, applying the normal PDF model to a dataset after reverse scoring all
the items leads to a model with different parameter estimates, and different good-
ness of fit. To illustrate, we fitted one- and two-dimensional normal PDF models to
the satisfaction with life data after reverse scoring all the items. For the one dimen-
sional model we obtained T = 0.54, = 27.82 on 5 df, p = .00, and = 25.07 on
4.51 df, p = .00. For the two-dimensional model we obtained T = 0.02, = 0.90 on
1 df, p = .34, and = 0.90 on 1 df, p = .34. Thus, the normal PDF model fits much
better when we model dissatisfaction with life (i.e., after reverse scoring all the
items) than when we model satisfaction with life (no reverse scoring).

We conjecture that for an IRT model to be equivariant to reverse scoring, the
item response function should be the cumulative density function of a symmetric
random variable. Should our conjecture prove correct, then maybe no ideal point
model is equivariant. This has important implications for the application of ideal
point models to personality research but not so much for their application to attitu-
dinal research. In many attitudinal items there is a natural category to be modeled,
so it may not be meaningful to reverse score the items. In contrast, in personality
research, often which category is modeled is arbitrary. One instance is modeling
satisfaction with life. It is just as meaningful to model dissatisfaction with life. An-
other instance is modeling extraversion. It is just as meaningful to model introver-
sion. When a model is not equivariant, then it should be fit separately with and
without reverse ordering for comparisons, particularly when there is no natural
category to be modeled.
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APPENDIX

To prove (8) we apply the change of variable to obtain and

. Thus,

Now, inside the squared brackets we have

where

and are a k × 1 vector and a k × p matrix obtained by selecting rows in �

and B according to s. Thus,
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as

Finally, to prove (8) it suffices to show that

where
Now, to prove (A.1) we write with . Therefore,

.

To prove (A.2), as
and ,

which concludes the proof.
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